skip to main content


Search for: All records

Creators/Authors contains: "Hamilton, Trinity L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Snow is a critical component of the Earth system. High-elevation snow can persist into the spring, summer, and early fall and hosts a diverse array of life, including snow algae. Due in part to the presence of pigments, snow algae lower albedo and accelerate snow melt, which has led to increasing interest in identifying and quantifying the environmental factors that constrain their distribution. Dissolved inorganic carbon (DIC) concentration is low in supraglacial snow on Cascade stratovolcanoes, and snow algae primary productivity can be stimulated through DIC addition. Here we asked if inorganic carbon would be a limiting nutrient for snow hosted on glacially eroded carbonate bedrock, which could provide an additional source of DIC. We assayed snow algae communities for nutrient and DIC limitation on two seasonal snowfields on glacially eroded carbonate bedrock in the Snowy Range of the Medicine Bow Mountains, Wyoming, United States. DIC stimulated snow algae primary productivity in snow with lower DIC concentration despite the presence of carbonate bedrock. Our results support the hypothesis that increased atmospheric CO2 concentrations may lead to larger and more robust snow algae blooms globally, even for sites with carbonate bedrock.

     
    more » « less
  2. Tamaki, Hideyuki (Ed.)
    ABSTRACT Glaciers are rapidly receding under climate change. A melting cryosphere will dramatically alter global sea levels, carbon cycling, and water resource availability. Glaciers host rich biotic communities that are dominated by microbial diversity, and this biodiversity can impact surface albedo, thereby driving a feedback loop between biodiversity and cryosphere melt. However, the microbial diversity of glacier ecosystems remains largely unknown outside of major ice sheets, particularly from a temporal perspective. Here, we characterized temporal dynamics of bacteria, eukaryotes, and algae on the Paradise Glacier, Mount Rainier, USA, over nine time points spanning the summer melt season. During our study, the glacier surface steadily darkened as seasonal snow melted and darkening agents accumulated until new snow fell in late September. From a community-wide perspective, the bacterial community remained generally constant while eukaryotes and algae exhibited temporal progression and community turnover. Patterns of individual taxonomic groups, however, were highly stochastic. We found little support for our a priori prediction that autotroph abundance would peak before heterotrophs. Notably, two different trends in snow algae emerged—an abundant early- and late-season operational taxonomic unit (OTU) with a different midsummer OTU that peaked in August. Overall, our results highlight the need for temporal sampling to clarify microbial diversity on glaciers and that caution should be exercised when interpreting results from single or few time points. IMPORTANCE Microbial diversity on mountain glaciers is an underexplored component of global biodiversity. Microbial presence and activity can also reduce the surface albedo or reflectiveness of glaciers, causing them to absorb more solar radiation and melt faster, which in turn drives more microbial activity. To date, most explorations of microbial diversity in the mountain cryosphere have only included single time points or focused on one microbial community (e.g., bacteria). Here, we performed temporal sampling over a summer melt season for the full microbial community, including bacteria, eukaryotes, and fungi, on the Paradise Glacier, Washington, USA. Over the summer, the bacterial community remained generally constant, whereas eukaryote and algal communities temporally changed through the melt season. Individual taxonomic groups, however, exhibited considerable stochasticity. Overall, our results highlight the need for temporal sampling on glaciers and that caution should be exercised when interpreting results from single or few time points. 
    more » « less
  3. Mendoza-Lera, Clara (Ed.)
    The microbial communities of lake sediments have the potential to serve as valuable bioindicators and integrators of watershed land-use and water quality; however, the relative sensitivity of these communities to physio-chemical and geographical parameters must be demonstrated at taxonomic resolutions that are feasible by current sequencing and bioinformatic approaches. The geologically diverse and lake-rich state of Minnesota (USA) is uniquely situated to address this potential because of its variability in ecological region, lake type, and watershed land-use. In this study, we selected twenty lakes with varying physio-chemical properties across four ecological regions of Minnesota. Our objectives were to (i) evaluate the diversity and composition of the bacterial community at the sediment-water interface and (ii) determine how lake location and watershed land-use impact aqueous chemistry and influence bacterial community structure. Our 16S rRNA amplicon data from lake sediment cores, at two depth intervals, data indicate that sediment communities are more likely to cluster by ecological region rather than any individual lake properties ( e . g ., trophic status, total phosphorous concentration, lake depth). However, composition is tied to a given lake, wherein samples from the same core were more alike than samples collected at similar depths across lakes. Our results illustrate the diversity within lake sediment microbial communities and provide insight into relationships between taxonomy, physicochemical, and geographic properties of north temperate lakes. 
    more » « less
  4. Abstract

    The importance of glacier meltwater as a source of mountain-block recharge remains poorly quantified, yet it may be essential to the integrity of alpine aquatic ecosystems by maintaining baseflow in streams and perennial flow in springs. We test the hypothesis that meltwater from alpine glaciers is a critical source of recharge for mountain groundwater systems using traditional stable isotopic source-identification techniques combined with a novel application of microbial DNA. We find that not only is alpine glacier meltwater a critical source of water for many springs, but that alpine springs primarily supported by glacial meltwater contain microbial taxa that are unique from springs primarily supported by seasonal recharge. Thus, recharge from glacial meltwater is vital in maintaining flow in alpine springs and it supports their distinct microbiomes.

     
    more » « less
  5. Abstract

    Tikal, a major city of the ancient Maya world, has been the focus of archaeological research for over a century, yet the interactions between the Maya and the surrounding Neotropical forests remain largely enigmatic. This study aimed to help fill that void by using a powerful new technology, environmental DNA analysis, that enabled us to characterize the site core vegetation growing in association with the artificial reservoirs that provided the city water supply. Because the area has no permanent water sources, such as lakes or rivers, these reservoirs were key to the survival of the city, especially during the population expansion of the Classic period (250–850 CE). In the absence of specific evidence, the nature of the vegetation surrounding the reservoirs has been the subject of scientific hypotheses and artistic renderings for decades. To address these hypotheses we captured homologous sequences of vascular plant DNA extracted from reservoir sediments by using a targeted enrichment approach involving 120-bp genetic probes. Our samples encompassed the time before, during and after the occupation of Tikal (1000 BCE–900 CE). Results indicate that the banks of the ancient reservoirs were primarily fringed with native tropical forest vegetation rather than domesticated species during the Maya occupation.

     
    more » « less
  6. Thermoflexus hugenholtzii JAD2 T , the only cultured representative of the Chloroflexota order Thermoflexales , is abundant in Great Boiling Spring (GBS), NV, United States, and close relatives inhabit geothermal systems globally. However, no defined medium exists for T. hugenholtzii JAD2 T and no single carbon source is known to support its growth, leaving key knowledge gaps in its metabolism and nutritional needs. Here, we report comparative genomic analysis of the draft genome of T. hugenholtzii JAD2 T and eight closely related metagenome-assembled genomes (MAGs) from geothermal sites in China, Japan, and the United States, representing “ Candidatus Thermoflexus japonica,” “ Candidatus Thermoflexus tengchongensis,” and “ Candidatus Thermoflexus sinensis.” Genomics was integrated with targeted exometabolomics and 13 C metabolic probing of T. hugenholtzii . The Thermoflexus genomes each code for complete central carbon metabolic pathways and an unusually high abundance and diversity of peptidases, particularly Metallo- and Serine peptidase families, along with ABC transporters for peptides and some amino acids. The T. hugenholtzii JAD2 T exometabolome provided evidence of extracellular proteolytic activity based on the accumulation of free amino acids. However, several neutral and polar amino acids appear not to be utilized, based on their accumulation in the medium and the lack of annotated transporters. Adenine and adenosine were scavenged, and thymine and nicotinic acid were released, suggesting interdependency with other organisms in situ . Metabolic probing of T. hugenholtzii JAD2 T using 13 C-labeled compounds provided evidence of oxidation of glucose, pyruvate, cysteine, and citrate, and functioning glycolytic, tricarboxylic acid (TCA), and oxidative pentose-phosphate pathways (PPPs). However, differential use of position-specific 13 C-labeled compounds showed that glycolysis and the TCA cycle were uncoupled. Thus, despite the high abundance of Thermoflexus in sediments of some geothermal systems, they appear to be highly focused on chemoorganotrophy, particularly protein degradation, and may interact extensively with other microorganisms in situ . 
    more » « less
  7. Abstract

    The vertical transmission of microbes from mother to offspring is critical to the survival, development, and health of animals. Invertebrate systems offer unique opportunities to conduct studies on microbiome‐development‐reproduction dynamics since reproductive modes ranging from oviparity to multiple types of viviparity are found in these animals. One such invertebrate is the live‐bearing cockroach,Diploptera punctata. Females carry embryos in their brood sac, which acts as the functional equivalent of the uterus and placenta. In our study, 16S rRNA sequencing was used to characterize maternal and embryonic microbiomes as well as the development of the whole‐body microbiome across nymphal development. We identified 50 phyla and 121 classes overall and found that mothers and their developing embryos had significantly different microbial communities. Of particular interest is the notable lack of diversity in the embryonic microbiome, which is comprised exclusively of Blattabacteria, indicating microbial transmission of only this symbiont during gestation. Our analysis of postnatal development reveals that significant amounts of non‐Blattabacteria species are not able to colonize newbornD. punctatauntil melanization, after which the microbial community rapidly and dynamically diversifies. While the role of these microbes during development has not been characterized, Blattabacteria must serve a critical role providing specific micronutrients lacking in milk secretions to the embryos during gestation. This research provides insight into the microbiome development, specifically with relation to viviparity, provisioning of milk‐like secretions, and mother–offspring interactions during pregnancy.

     
    more » « less